论文标题
Fermi极性在有限温度下:光谱功能和RF光谱镜检查
Fermi polarons at finite temperature: Spectral function and rf-spectroscopy
论文作者
论文摘要
我们通过使用标准的非辅助多体$ t $ t $ - 马特里克体理论,对在有限温度下浸入三维费米亚费米斯的移动杂质进行系统研究,该理论等同于一种有限的 - 温度变化方法,并纳入了一方 - - 杂质 - - 杂质 - - 杂质 - 杂质 - 均应 - 均应 - 共兴奋。杂质光谱函数在实际频率域中确定,避免了由于先前的$ t $ -Matrix计算中的数值分析延续而导致的任何潜在误差,以及用于变化计算中的小光谱扩展参数。在弱耦合极限中,我们发现有吸引力和排斥极子的准蛋白衰减速率随着温度的升高并没有显着增加,因此费米极性子可能保持远高于费米的变性。相比之下,在统一限制的近极界限附近,费米极性子的衰减速率迅速增加,而准粒子图片分解接近费米温度。我们详细分析了在马萨诸塞州技术研究所(MIT)和欧洲非线性光谱法实验室(MIT)进行的近期弹射和注射射频光谱测量值。我们表明,光谱函数的动量平均值,这是对观察到的RF镜检查所必需的,对光谱学中准粒子峰的宽度具有相当大的贡献。结果,所测得的费米极性子的衰减速率可能明显大于零动量下计算出的准粒子衰变速率。通过考虑这一关键贡献,我们发现,只要它们保持明确定义,就可以在强耦合方面对费米极性子的寿命之间的理论与实验之间有一个合理的一致性。
We present a systematic study of a mobile impurity immersed in a three-dimensional Fermi sea of fermions at finite temperature, by using the standard non-self-consistent many-body $T$-matrix theory that is equivalent to a finite-temperature variational approach with the inclusion of one-particle-hole excitation. The impurity spectral function is determined in the real-frequency domain, avoiding any potential errors due to the numerical analytic continuation in previous $T$-matrix calculations and the small spectral broadening parameter used in variational calculations. In the weak-coupling limit, we find that the quasiparticle decay rate of both attractive and repulsive polarons does not increase significantly with increasing temperature, and therefore Fermi polarons may remain well-defined far above Fermi degeneracy. In contrast, near the unitary limit with strong coupling, the decay rate of Fermi polarons rapidly increase and the quasiparticle picture breaks down close to the Fermi temperature. We analyze in detail the recent ejection and injection radio-frequency (rf) spectroscopy measurements, performed at Massachusetts Institute of Technology (MIT) and at European Laboratory for Non-Linear Spectroscopy (LENS), respectively. We show that the momentum average of the spectral function, which is necessary to account for the observed rf-spectroscopy, has a sizable contribution to the width of the quasiparticle peak in spectroscopy. As a result, the measured decay rate of Fermi polarons could be significantly larger than the calculated quasiparticle decay rate at zero momentum. By take this crucial contribution into account, we find that there is a reasonable agreement between theory and experiment for the lifetime of Fermi polarons in the strong-coupling regime, as long as they remain well-defined.