论文标题
平均案例交互式图搜索的具有成本效益的算法
Cost-Effective Algorithms for Average-Case Interactive Graph Search
论文作者
论文摘要
交互式图形搜索(IGS)使用人类智能在层次结构中定位目标节点,可以将其应用于图像分类,产品分类和搜索数据库。具体而言,IGS的目的是通过几轮交互式查询从给定类别层次结构进行分类。在每一轮查询中,搜索算法选择一个类别,并就对象是否位于所选类别中的对象进行布尔答案。主要效率目标要求查询数量最少,以识别对象的正确层次结构类别。在本文中,我们研究了平均案例交互式图形搜索(AIG)问题,该问题旨在最大程度地减少对象遵循概率分布时的预期查询数量。我们提出了一项贪婪的搜索政策,该政策将候选类别的类别均匀地划分为概率权重,鉴于AIG的概率权重为AIG提供了$ O(\ log n)$的近似保证,鉴于类别层次结构是指导的acyclic图(DAG),其中$ n $是类别的总数。同时,如果输入层次结构是树,我们表明可以实现$(1+ \ sqrt {5})/2 $的常数近似因子。此外,我们提出了贪婪政策的有效实施,即贪婪的人和贪婪,可以在实践中迅速对对象进行分类。在实际情况下进行了广泛的实验,以证明我们提出的方法的优越性。
Interactive graph search (IGS) uses human intelligence to locate the target node in hierarchy, which can be applied for image classification, product categorization and searching a database. Specifically, IGS aims to categorize an object from a given category hierarchy via several rounds of interactive queries. In each round of query, the search algorithm picks a category and receives a boolean answer on whether the object is under the chosen category. The main efficiency goal asks for the minimum number of queries to identify the correct hierarchical category for the object. In this paper, we study the average-case interactive graph search (AIGS) problem that aims to minimize the expected number of queries when the objects follow a probability distribution. We propose a greedy search policy that splits the candidate categories as evenly as possible with respect to the probability weights, which offers an approximation guarantee of $O(\log n)$ for AIGS given the category hierarchy is a directed acyclic graph (DAG), where $n$ is the total number of categories. Meanwhile, if the input hierarchy is a tree, we show that a constant approximation factor of $(1+\sqrt{5})/2$ can be achieved. Furthermore, we present efficient implementations of the greedy policy, namely GreedyTree and GreedyDAG, that can quickly categorize the object in practice. Extensive experiments in real-world scenarios are carried out to demonstrate the superiority of our proposed methods.