论文标题
关于亚代词在图$ c^*$ - 代数中的结合。 ii
On Conjugacy of Subalgebras in Graph $C^*$-Algebras. II
论文作者
论文摘要
我们应用了一种受Popa相互交织的逐个模型技术启发的方法,以研究MASA在图中的内部连接性$ C^*$ - 代数。首先,我们将对角masa $ {\ Mathcal d} _n $的非inner轭的新证明提供给其非平凡图像,而无态的自动形态学,其中$ e $是有限的传递图形。代表代数的更改图,此结果也适用于一些非准无准的自动形态。然后,我们在Cuntz代数$ {\ MATHCAL O} _n $中展示了一大批MASA,它们与对角线$ {\ Mathcal d} _n $都不是内在的。
We apply a method inspired by Popa's intertwining-by-bimodules technique to investigate inner conjugacy of MASAs in graph $C^*$-algebras. First we give a new proof of non-inner conjugacy of the diagonal MASA ${\mathcal D}_n$ to its non-trivial image under a quasi-free automorphism, where $E$ is a finite transitive graph. Changing graphs representing the algebras, this result applies to some non quasi-free automorphisms as well. Then we exhibit a large class of MASAs in the Cuntz algebra ${\mathcal O}_n$ that are not inner conjugate to the diagonal ${\mathcal D}_n$.