论文标题

在非碰撞情况下,几乎最大的体积熵刚度

Almost maximal volume entropy rigidity for integral Ricci curvature in the non-collapsing case

论文作者

Chen, Lina

论文摘要

在本说明中,我们将显示在非碰撞情况下绑定的较低积分ricci曲率的歧管几乎最大的熵刚度:给定$ n,d,p> \ frac {n} {2} $,存在$Δ(​​n,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,d,p) d,p)$,如果一个紧凑的$ n $ -n $ manifold $ m $满足整体curvature ricci曲率的下限$ \ bar k(-1,p)\leqΔ$,diameter $ diamoter $ diam(m)\ leq d $ and voluge enturepropy $ h(m)\ geq n-1-- $ $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ m $ $ \ bbb h^k $,$ k \ leq n $;如果此外,如果$ m $,$ vol(m)\ geq v> 0 $,则$ m $是diffeomorphic的,而gromov-hausdorff靠近双曲线歧管,其中$δ,ε$也取决于$ v $。

In this note we will show the almost maximal volume entropy rigidity for manifolds with lower integral Ricci curvature bound in the non-collapsing case: Given $n, d, p>\frac{n}{2}$, there exist $δ(n, d, p), ε(n, d, p)>0$, such that for $δ<δ(n, d, p)$, $ε<ε(n, d, p)$, if a compact $n$-manifold $M$ satisfies that the integral Ricci curvature has lower bound $\bar k(-1, p)\leq δ$, the diameter $diam(M)\leq d$ and volume entropy $h(M)\geq n-1-ε$, then the universal cover of $M$ is Gromov-Hausdorff close to a hyperbolic space form $\Bbb H^k$, $k\leq n$; If in addition the volume of $M$, $vol(M)\geq v>0$, then $M$ is diffeomorphic and Gromov-Hausdorff close to a hyperbolic manifold where $δ, ε$ also depends on $v$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源