论文标题
热木星中流通的浅 - 推进欧姆耗散模型
Shallowness of circulation in hot Jupiters -- Advancing the Ohmic dissipation model
论文作者
论文摘要
巨大短周期外行星的膨胀半径统称表明,热木星的内部由某些异常的能量耗散机制加热。尽管已经提出了各种物理过程来解释这种加热,但最近的统计证据表明,确认了欧姆耗散理论的明确预测,将这种机制提升为解决半径膨胀问题的最有前途的候选人。在这项工作中,我们提出了耗散率的分析模型,并得出了一种简单的缩放定律,将能量耗散的幅度与大气天气层的厚度联系起来。从这个关系中,我们发现穿透深度通过数量级影响欧姆的耗散率。我们进一步研究了热木星的天气层深度,从其通货膨胀的程度中,表明,根据磁场强度,即使循环层相对较浅,也可以保持热木星半径。此外,我们通过将我们的分析模型与统计预期的耗散率相匹配,探索具有平衡温度的区域风速的演变。从此分析中,我们推断出风速大约缩放为$ 1/\ sqrt {t_ \ mathrm {eq} -t_0} $,其中$ t_0 $是等于$ t_0 \ sim 1000〜 \ sim 1000〜 \ mathrm {k} -1800〜 \ mathrm {k} $ devibific of Planectiac的常数。这项工作概述了关于大气流和热木星的磁场相关的约束,并为未来的欧姆加热机构提供了基础。
The inflated radii of giant short-period extrasolar planets collectively indicate that the interiors of hot Jupiters are heated by some anomalous energy dissipation mechanism. Although a variety of physical processes have been proposed to explain this heating, recent statistical evidence points to the confirmation of explicit predictions of the Ohmic dissipation theory, elevating this mechanism as the most promising candidate for resolving the radius inflation problem. In this work, we present an analytic model for the dissipation rate and derive a simple scaling law that links the magnitude of energy dissipation to the thickness of the atmospheric weather layer. From this relation, we find that the penetration depth influences the Ohmic dissipation rate by an order of magnitude. We further investigate the weather layer depth of hot Jupiters from the extent of their inflation and show that, depending on the magnetic field strength, hot Jupiter radii can be maintained even if the circulation layer is relatively shallow. Additionally, we explore the evolution of zonal wind velocities with equilibrium temperature by matching our analytic model to statistically expected dissipation rates. From this analysis, we deduce that the wind speed scales approximately as $1/\sqrt{T_\mathrm{eq}-T_0}$, where $T_0$ is a constant that equals $T_0 \sim 1000~\mathrm{K}-1800~\mathrm{K}$ depending on planet-specific parameters (radius, mass, etc.). This work outlines inter-related constraints on the atmospheric flow and the magnetic field of hot Jupiters and provides a foundation for future work on the Ohmic heating mechanism.