论文标题

古典的杨巴克斯特方程,拉格朗日多形和超局部可集成的层次结构

Classical Yang-Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies

论文作者

Caudrelier, Vincent, Stoppato, Matteo, Vicedo, Benoit

论文摘要

我们通过将其与拉格朗日多形式的理论联系起来,这是一个旨在以各种方式捕获集成性的框架,我们首次将经典的Yang-baxter方程式(CYBE)施加在变化上下文中。这提供了Lagrangian Multiforms与Cybe之间的显着联系,Cybe是可集成系统的最基本概念之一。这是通过引入生成的Lagrangian多形式来实现的,该多形式取决于具有光谱参数的偏斜对称的经典$ R $ -MATRIX。多形的Euler-Lagrange方程产生的生成宽松方程,该方程得出零曲率方程。 CYBE在三个级别上发挥作用:1)它确保了生成洛杉矶k方程的流动的通勤性; 2)它确保生成零曲率方程保持; 3)这意味着生成拉格朗日多形式的封闭关系。通过固定某些数据来实现可集成层次结构的规范:有限的集合$ s \在cp^1 $中,一个lie代数$ \ mathfrak {g} $,$ \ mathfrak {g} $ - $ s $ in $ s $和a $ r $ -mmatrix的$ \ mathfrak {g} $。我们展示了我们的框架如何通过提供与理性或三角学类别有关的几个已知和新示例来生成大量的超局部可集成层次结构。其中包括Ablowitz-Kaup-Newell-Segur层次结构,正弦 - 戈登(SG)层次结构以及与Zakharov-Mikhailov类型模型相关的各种层次模型,这些模型包含Faddeev-Reshetikhin(FR)模型,最近引入了Sigma/Gross-neveu型号。通过展示如何将可集成的层次结合在一起以创建可集成的字段理论及其层次结构的新示例来说明我们方法的多功能性。我们提供了两个示例:非线性Schrödinger系统与FR模型的耦合以及SG与各向异性FR模型的耦合。

We cast the classical Yang-Baxter equation (CYBE) in a variational context for the first time, by relating it to the theory of Lagrangian multiforms, a framework designed to capture integrability in a variational fashion. This provides a significant connection between Lagrangian multiforms and the CYBE, one of the most fundamental concepts of integrable systems. This is achieved by introducing a generating Lagrangian multiform which depends on a skew-symmetric classical $r$-matrix with spectral parameters. The multiform Euler-Lagrange equations produce a generating Lax equation which yields a generating zero curvature equation. The CYBE plays a role at three levels: 1) It ensures the commutativity of the flows of the generating Lax equation; 2) It ensures that the generating zero curvature equation holds; 3) It implies the closure relation for the generating Lagrangian multiform. The specification of an integrable hierarchy is achieved by fixing certain data: a finite set $S\in CP^1$, a Lie algebra $\mathfrak{g}$, a $\mathfrak{g}$-valued rational function with poles in $S$ and an $r$-matrix. We show how our framework is able to generate a large class of ultralocal integrable hierarchies by providing several known and new examples pertaining to the rational or trigonometric class. These include the Ablowitz-Kaup-Newell-Segur hierarchy, the sine-Gordon (sG) hierarchy and various hierachies related to Zakharov-Mikhailov type models which contain the Faddeev-Reshetikhin (FR) model and recently introduced deformed sigma/Gross-Neveu models as particular cases. The versatility of our method is illustrated by showing how to couple integrable hierarchies together to create new examples of integrable field theories and their hierarchies. We provide two examples: the coupling of the nonlinear Schrödinger system to the FR model and the coupling of sG with the anisotropic FR model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源