论文标题

PT挑战:在大容量的高分辨率模拟上对ShapeFit的验证

PT challenge: Validation of ShapeFit on large-volume, high-resolution mocks

论文作者

Brieden, Samuel, Gil-Marín, Héctor, Verde, Licia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The ShapeFit compression method has been shown to be a powerful tool to gain cosmological information from galaxy power spectra in an effective, model-independent way. Here we present its performance on the blind PT challenge mock products presented in [1]. Choosing a set-up similar to that of other participants to the blind challenge we obtained $Δ\ln\left(10^{10} A_s\right) = -0.018 \pm 0.014$, $ΔΩ_\mathrm{m} = 0.0039 \pm 0.0021$ and $Δh =-0.0009 \pm 0.0034$, remaining below $2σ$ deviations for a volume of $566 \left[ h^{-1}\mathrm{Gpc}\right]^3$. This corresponds to a volume 10 times larger than the volume probed by future galaxy surveys. We also present an analysis of these mocks oriented towards an actual data analysis using the full redshift evolution, using all three redshift bins $z_1 = 0.38$, $z_2=0.51$, and $z_3 = 0.61$, and exploring different set-ups to quantify the impact of choices or assumptions on noise, bias, scale range, etc. We find consistency across reasonable changes in set-up and across redshifts and that, as expected, mapping the redshift evolution of clustering helps constraining cosmological parameters within a given model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源