论文标题
模拟条可能短,但并不比观察到的慢:TNG50与漫画
Simulated Bars May Be Shorter But Are Not Slower Than Observed: TNG50 vs. MaNGA
论文作者
论文摘要
银河条是磁盘星系中突出的动力结构,其大小,地层时间,强度和模式速度会影响其宿主星系的动态演化。然而,由于宇宙学模拟研究受到模拟量和分辨率之间的经典权衡的限制,因此在宇宙学环境中的形成和演变尚不清楚。在这里,我们分析了宇宙学磁动力学模拟TNG50中的圆盘星系,并定量地比较了条形尺寸和模式速度的分布与$ z = 0 $的漫画观测值的分布。选择TNG50星系以匹配观测星系的恒星质量和尺寸分布,以说明观察性选择效果。我们发现,TNG50的高分辨率产生具有广泛模式速度的条(包括具有$ \ geq 40〜 \ Mathrm {km} \,\ Mathrm {s}^{ - 1} $ \,$ \,$ \ MATHRM {美元$ 6 \,\ Mathrm {km} \,\ Mathrm {s}^{ - 1} $ \,$ \ Mathrm {kpc}^{ - 1} $,与以前产生的低分辨率宇宙学模拟相反,产生了太慢。但是,我们发现TNG50中的条平均比观察到的$ \%35 \%$短,尽管这种差异可能部分反映了模拟数据比较中的剩余不一致。这导致$ \ Mathcal {r} = r_ \ mathrm {corot}/r_ \ mathrm {bar} $的较高值,但指向模拟条形的模拟条形为“太短”而不是“太慢”。在对相同模拟的较低分辨率运行(具有相同的物理模型)的较低分析进行分析之后,我们在先前的研究中定性地重现了获得的结果:这意味着,与物理模型变化一起,数值分辨率效应可以解释先前发现的模拟条形的“慢慢”。
Galactic bars are prominent dynamical structures within disk galaxies whose size, formation time, strength, and pattern speed influence the dynamical evolution of their hosts galaxies. Yet, their formation and evolution in a cosmological context is not well understood, as cosmological simulation studies have been limited by the classic trade off between simulation volume and resolution. Here we analyze barred disk galaxies in the cosmological magneto-hydrodynamical simulation TNG50 and quantitatively compare the distributions of bar size and pattern speed to those from MaNGA observations at $z=0$. TNG50 galaxies are selected to match the stellar mass and size distributions of observed galaxies, to account for observational selection effects. We find that the high-resolution of TNG50 yields bars with a wide range of pattern speeds (including those with $\geq 40~\mathrm{km}\,\mathrm{s}^{-1}$\,$\mathrm{kpc}^{-1}$) and a mean value of $\sim36~\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{kpc}$ consistent with observations within $6\,\mathrm{km}\,\mathrm{s}^{-1}$\,$\mathrm{kpc}^{-1}$, in contrast with previous lower-resolution cosmological simulations that produced bars that were too slow. We find, however, that bars in TNG50 are on average $\sim 35\%$ shorter than observed, although this discrepancy may partly reflect remaining inconsistencies in the simulation-data comparison. This leads to higher values of $\mathcal{R} = R_\mathrm{corot}/R_\mathrm{bar}$ in TNG50, but points to simulated bars being `too short' rather than `too slow'. After repeating the analysis on the lower-resolution run of the same simulation (with the same physical model), we qualitatively reproduce the results obtained in previous studies: this implies that, along with physical model variations, numerical resolution effects may explain the previously found `slowness' of simulated bars.