论文标题
阻塞拉格朗日和一致性,以封闭3编
Obstructing Lagrangian concordance for closures of 3-braids
论文作者
论文摘要
我们表明,任何顺利闭合3框的结都不能与最大的Thurston-Bennequin Legendrian Unkinot脱颖而出。我们的障碍物来自绘制$ s^3 $的循环分支双层盖的特定符号分支双层盖的特定符号填充物的韦恩斯坦手柄图。我们使用这些图中的链接的Legendrian接触同源差异分级代数来计算这些填充物的符合性同源性,以得出矛盾。作为推论,我们找到了一个无限的接触歧管系列,该家族是理性同源性领域,但不会嵌入$ \ mathbb {r}^4 $作为接触类型Hypersurfaces。
We show that any knot which is smoothly the closure of a 3-braid cannot be Lagrangian concordant to and from the maximum Thurston-Bennequin Legendrian unknot except the unknot itself. Our obstruction comes from drawing the Weinstein handlebody diagrams of particular symplectic fillings of cyclic branched double covers of knots in $S^3$. We use the Legendrian contact homology differential graded algebra of the links in these diagrams to compute the symplectic homology of these fillings to derive a contradiction. As a corollary, we find an infinite family of contact manifolds which are rational homology spheres but do not embed in $\mathbb{R}^4$ as contact type hypersurfaces.