论文标题

学习针对基于图的可解释强化学习的两步混合政策

Learning Two-Step Hybrid Policy for Graph-Based Interpretable Reinforcement Learning

论文作者

Mu, Tongzhou, Lin, Kaixiang, Niu, Feiyang, Thattai, Govind

论文摘要

我们提出了两步混合增强学习(RL)策略,该策略旨在在基于图的输入的RL问题上生成可解释且可靠的层次结构策略。与以前的深度强化学习政策通过端到端的黑盒图神经网络参数为参数,我们的方法将决策过程分为两个步骤。第一步是一个简化的分类问题,该问题将图表输入映射到一个动作组,所有操作都具有相似的语义含义。第二步实现了一个复杂的规则工作者,该规则台在图表上进行了明确的单跳推理,并在图形输入中识别了果断的边缘,而无需重大领域知识。这项两步的混合政策提出了对人类友好的解释,并在概括和鲁棒性方面取得了更好的表现。关于四个级别的基于文本的游戏的大量实验研究表明,与最先进的方法相比,该方法的优越性。

We present a two-step hybrid reinforcement learning (RL) policy that is designed to generate interpretable and robust hierarchical policies on the RL problem with graph-based input. Unlike prior deep reinforcement learning policies parameterized by an end-to-end black-box graph neural network, our approach disentangles the decision-making process into two steps. The first step is a simplified classification problem that maps the graph input to an action group where all actions share a similar semantic meaning. The second step implements a sophisticated rule-miner that conducts explicit one-hop reasoning over the graph and identifies decisive edges in the graph input without the necessity of heavy domain knowledge. This two-step hybrid policy presents human-friendly interpretations and achieves better performance in terms of generalization and robustness. Extensive experimental studies on four levels of complex text-based games have demonstrated the superiority of the proposed method compared to the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源