论文标题
基于多收源嘈杂数据的值得信赖的知识图完成
Trustworthy Knowledge Graph Completion Based on Multi-sourced Noisy Data
论文作者
论文摘要
知识图(KGS)已成为许多AI应用程序的宝贵资产。尽管有些公斤包含许多事实,但它们被广泛认为是不完整的。为了解决这个问题,提出了许多公斤的完成方法。其中,开放kg完成方法利用网络找到缺失的事实。但是,从不同来源收集的嘈杂数据可能会损害完成精度。在本文中,我们提出了一种新的值得信赖的方法,该方法基于基于多种噪声数据和kg中现有事实来利用事实。具体来说,我们引入了具有整体评分功能的图形神经网络,以判断具有各种价值类型的事实的合理性。我们设计价值对齐网络,以解决价值观之间的异质性,并将其映射到kg之外的实体。此外,我们提出了一个真实的推理模型,该模型将数据源质量纳入事实评分函数,并设计一种半监督的学习方式来从异质价值中推断真实。我们进行了广泛的实验,以将我们的方法与最先进的方法进行比较。结果表明,我们的方法不仅在完成缺失的事实,而且在发现新事实方面都达到了卓越的准确性。
Knowledge graphs (KGs) have become a valuable asset for many AI applications. Although some KGs contain plenty of facts, they are widely acknowledged as incomplete. To address this issue, many KG completion methods are proposed. Among them, open KG completion methods leverage the Web to find missing facts. However, noisy data collected from diverse sources may damage the completion accuracy. In this paper, we propose a new trustworthy method that exploits facts for a KG based on multi-sourced noisy data and existing facts in the KG. Specifically, we introduce a graph neural network with a holistic scoring function to judge the plausibility of facts with various value types. We design value alignment networks to resolve the heterogeneity between values and map them to entities even outside the KG. Furthermore, we present a truth inference model that incorporates data source qualities into the fact scoring function, and design a semi-supervised learning way to infer the truths from heterogeneous values. We conduct extensive experiments to compare our method with the state-of-the-arts. The results show that our method achieves superior accuracy not only in completing missing facts but also in discovering new facts.