论文标题

用硅自旋尺寸校正量子误差

Quantum error correction with silicon spin qubits

论文作者

Takeda, Kenta, Noiri, Akito, Nakajima, Takashi, Kobayashi, Takashi, Tarucha, Seigo

论文摘要

大规模量子计算机依靠量子误差校正来保护脆弱的量子信息。在量子计算设备的可能候选者中,基于硅的旋转速度值是巨大的希望,因为它们兼容了成熟的纳米化技术来扩展。基于硅的Qubits的最新进展使得能够实现高质量的一量子和两个量子系统。但是,量子误差校正的演示(需要三个或更多的耦合量子位,通常涉及一个三克门,仍然是一个开放的挑战。在这里,我们在硅中演示了一个三Q量相校正代码,其中保护了三个量子位之一的任何相叉误差,在其中保护了一个编码的三量子状态。对该编码状态的校正是通过三粒条件旋转进行的,我们通过有效的单步驱动的iToffoli门实现。正如预期的那样,误差校正会减轻由于一个Qubit相叉引起的误差,以及由于准静态相噪声而引起的固有脱位。这些结果表明,量子误差校正的成功实现以及基于硅平台对大规模量子计算的潜力。

Large-scale quantum computers rely on quantum error correction to protect the fragile quantum information. Among the possible candidates of quantum computing devices, silicon-based spin qubits hold a great promise due to their compatibility to mature nanofabrication technologies for scaling up. Recent advances in silicon-based qubits have enabled the implementations of high quality one and two qubit systems. However, the demonstration of quantum error correction, which requires three or more coupled qubits and often involves a three-qubit gate, remains an open challenge. Here, we demonstrate a three-qubit phase correcting code in silicon, where an encoded three-qubit state is protected against any phase-flip error on one of the three qubits. The correction to this encoded state is performed by a three-qubit conditional rotation, which we implement by an efficient single-step resonantly driven iToffoli gate. As expected, the error correction mitigates the errors due to one qubit phase-flip as well as the intrinsic dephasing due to quasi-static phase noise. These results show a successful implementation of quantum error correction and the potential of silicon-based platform for large-scale quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源