论文标题
Barabasi-Albert网络上的接触过程的相图
Phase Diagram of the Contact Process on Barabasi-Albert Networks
论文作者
论文摘要
我们显示了Barabasi网络上的联系过程的结果。接触过程是一种没有永久免疫力的流行病扩散的模型,具有吸收状态。对于有限的晶格,吸收状态是真正的固定状态,它导致需要模拟准地位状态,我们以两种方式进行了:通过插入自发感染的个体或准平台方法的重新激活,或者通过准平台方法进行重新激活,我们在其中存储了在系统访问吸收性状态时继续进行的活性状态列表,以继续进行模拟。该系统提出了一个吸收的相变,其中临界行为遵守平均场指数$β= 1 $,$γ'= 0 $,而$ν= 2 $。但是,不同的准平台状态呈现出不同的有限大小对数校正。我们还将模型的关键阈值作为网络连接倒数$ 1/z $的线性函数,以及$ z \ to \ infty $的关键阈值函数的外推出了完整图的基本复制号$ r_0 = 1 $。降低网络连接导致该模型关键基本复制号$ R_0 $的增加。
We show results for the contact process on Barabasi networks. The contact process is a model for an epidemic spreading without permanent immunity that has an absorbing state. For finite lattices, the absorbing state is the true stationary state, which leads to the need for simulation of quasi-stationary states, which we did in two ways: reactivation by inserting spontaneous infected individuals, or by the quasi-stationary method, where we store a list of active states to continue the simulation when the system visits the absorbing state. The system presents an absorbing phase transition where the critical behavior obeys the Mean Field exponents $β=1$, $γ'=0$, and $ν=2$. However, the different quasi-stationary states present distinct finite-size logarithmic corrections. We also report the critical thresholds of the model as a linear function of the network connectivity inverse $1/z$, and the extrapolation of the critical threshold function for $z \to \infty$ yields the basic reproduction number $R_0=1$ of the complete graph, as expected. Decreasing the network connectivity leads to the increase of the critical basic reproduction number $R_0$ for this model.