论文标题

基于动态感染的基于基于分组测试

Dynamic Infection Spread Model Based Group Testing

论文作者

Arasli, Batuhan, Ulukus, Sennur

论文摘要

我们研究了受离散时间SIR模型的启发的动态感染扩散模型,在该模型中,感染通过非分离感染个体传播。虽然感染会随着时间的流逝而不断扩散,但在每个时间实例中也进行了有限的容量测试。与经典,静态的小组测试问题相反,我们的设置目标不是要找到最少所需的测试数量来确定每个人群中每个人的感染状态,而是通过使用给定的,使用给定的测试数量有限的测试来控制感染传播和隔离感染,以控制感染传播和隔离。为了分析提出的算法的性能,我们将重点放在对控制感染过程中未感染的个体数量的平均值分析上。我们提出了两种动态算法,两者都使用有限的测试来识别和隔离感染,而感染则会扩散。虽然第一种算法是一种动态的随机单个测试算法,但在第二个算法中,我们采用了类似于Dorfman的原始工作的组测试方法。通过考虑算法的弱版本,我们获得了算法性能的下限。最后,我们实施算法并运行模拟以收集数值结果并比较我们的算法和在不同的系统参数集中的理论近似结果。

We study a dynamic infection spread model, inspired by the discrete time SIR model, where infections are spread via non-isolated infected individuals. While infection keeps spreading over time, a limited capacity testing is performed at each time instance as well. In contrast to the classical, static, group testing problem, the objective in our setup is not to find the minimum number of required tests to identify the infection status of every individual in the population, but to control the infection spread by detecting and isolating the infections over time by using the given, limited number of tests. In order to analyze the performance of the proposed algorithms, we focus on the mean-sense analysis of the number of individuals that remain non-infected throughout the process of controlling the infection. We propose two dynamic algorithms that both use given limited number of tests to identify and isolate the infections over time, while the infection spreads. While the first algorithm is a dynamic randomized individual testing algorithm, in the second algorithm we employ the group testing approach similar to the original work of Dorfman. By considering weak versions of our algorithms, we obtain lower bounds for the performance of our algorithms. Finally, we implement our algorithms and run simulations to gather numerical results and compare our algorithms and theoretical approximation results under different sets of system parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源