论文标题
(k)不是机器学习
(K)not machine learning
论文作者
论文摘要
我们回顾了最新的机器学习结之间的关系的努力。由于这些结中的结中具有意义,因此我们探索了Chern-Simons理论和更高维度的理论的各个方面。这项工作的目的是将具有大数据的数值实验转换为新的分析结果。
We review recent efforts to machine learn relations between knot invariants. Because these knot invariants have meaning in physics, we explore aspects of Chern-Simons theory and higher dimensional gauge theories. The goal of this work is to translate numerical experiments with Big Data to new analytic results.