论文标题
使用张量环对变异量子分类器进行经典模拟
Classical Simulation of Variational Quantum Classifiers using Tensor Rings
论文作者
论文摘要
近来,各种量子电路(VQC)已被广泛用于机器学习中的不同任务,例如组合优化和监督学习。随着兴趣的日益增长,有必要研究VQC经典模拟的边界,以有效基准基准算法。经典模拟VQC还可以为量子算法提供更好的初始化,从而减少训练算法所需的量子资源量。本手稿提出了一种算法,该算法使用张量环表示在电路中压缩量子状态,该表示允许以通常的存储和计算复杂性的一部分在经典模拟器上实现基于VQC的算法。使用输入量子状态的张量环近似,我们提出了一种应用参数化的单一操作的方法,同时保留了与转换的量子状态相对应的张量环的低级别结构,从而在Qubits和layers数量的数量中对存储和计算时间进行了指数改善。该近似值用于实现张量环VQC,以在IRIS和MNIST数据集上进行监督学习的任务,以证明使用Matrix产品状态的经典模拟器的实现的可比性能。
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.