论文标题
用于预测复杂时空动力学的储层计算的系统探索
A Systematic Exploration of Reservoir Computing for Forecasting Complex Spatiotemporal Dynamics
论文作者
论文摘要
水库计算机(RC)是一种简化的复发性神经网络结构,在预测时空混乱的动力学系统方面已经取得了成功。 RC的另一个优点是,它重现了将其掺入数值预测例程(例如集合卡尔曼滤波器)中必不可少的固有动力学数量 - 用于数值天气预测以补偿稀疏和嘈杂的数据。我们在这里探索了许多特征动力学系统的“最佳类” RC的体系结构和设计选择,然后显示这些选择在使用本地化扩展到更大模型时的应用。我们的分析指出了大规模参数优化的重要性。我们还特别注意到在RC设计中包括输入偏差的重要性,这对训练有素的RC模型的预测技能产生了重大影响。在我们的测试中,非线性读数运算符的使用不会影响预测时间或预测的稳定性。还研究了储层维度,旋转时间,训练数据量,归一化,噪声和RC时间步长的影响。虽然我们不知道文献中不同模型的普遍报告的最佳报告的平均预测时间,但与Vlachas et.al(2020年)的最佳性能RC模型相比,平均预测时间增加了2倍,40多个尺寸时空时空的Chaotial Chaotic Chaotic Lorenz 1996 Dynamics(我们都可以使用较小的Resserveir size size size size size size size size size size size size。
A reservoir computer (RC) is a type of simplified recurrent neural network architecture that has demonstrated success in the prediction of spatiotemporally chaotic dynamical systems. A further advantage of RC is that it reproduces intrinsic dynamical quantities essential for its incorporation into numerical forecasting routines such as the ensemble Kalman filter -- used in numerical weather prediction to compensate for sparse and noisy data. We explore here the architecture and design choices for a "best in class" RC for a number of characteristic dynamical systems, and then show the application of these choices in scaling up to larger models using localization. Our analysis points to the importance of large scale parameter optimization. We also note in particular the importance of including input bias in the RC design, which has a significant impact on the forecast skill of the trained RC model. In our tests, the the use of a nonlinear readout operator does not affect the forecast time or the stability of the forecast. The effects of the reservoir dimension, spinup time, amount of training data, normalization, noise, and the RC time step are also investigated. While we are not aware of a generally accepted best reported mean forecast time for different models in the literature, we report over a factor of 2 increase in the mean forecast time compared to the best performing RC model of Vlachas et.al (2020) for the 40 dimensional spatiotemporally chaotic Lorenz 1996 dynamics, and we are able to accomplish this using a smaller reservoir size.