论文标题

半监督的对抗性识别对逆程序立面建模的精制窗口结构

Semi-Supervised Adversarial Recognition of Refined Window Structures for Inverse Procedural Façade Modeling

论文作者

Hu, Han, Liang, Xinrong, Ding, Yulin, Shang, Qisen, Xu, Bo, Ge, Xuming, Chen, Min, Zhong, Ruofei, Zhu, Qing

论文摘要

众所周知,深度学习方法是渴望数据的,它需要大量标记的样本。不幸的是,大量的交互式样品标记工作极大地阻碍了深度学习方法的应用,尤其是对于需要异质样本的3D建模任务。为了减轻对尺寸学习的3D建模的数据注释的工作,本文提出了一种半监督的对抗识别策略,该策略嵌入了反向程序建模中。从纹理的LOD-2(详细级别)模型开始,我们使用经典的卷积神经网络识别类型并从图像补丁中估算Windows的参数。然后将窗口类型和参数组装到程序语法中。一个简单的程序引擎是在现有的3D建模软件中构建的,产生了细粒的窗户几何形状。为了从一些标记的样品中获得有用的模型,我们利用生成对抗网络以半监督的方式训练特征提取器。对抗训练策略还可以利用未标记的数据,使训练阶段更加稳定。使用公共立面图像数据集使用的实验表明,在同一网络结构下,提出的培训策略可以提高分类精度约10%,参数估计提高了50%。此外,在针对具有不同外观样式的看不见的数据进行测试时,性能提高更为明显。

Deep learning methods are notoriously data-hungry, which requires a large number of labeled samples. Unfortunately, the large amount of interactive sample labeling efforts has dramatically hindered the application of deep learning methods, especially for 3D modeling tasks, which require heterogeneous samples. To alleviate the work of data annotation for learned 3D modeling of façades, this paper proposed a semi-supervised adversarial recognition strategy embedded in inverse procedural modeling. Beginning with textured LOD-2 (Level-of-Details) models, we use the classical convolutional neural networks to recognize the types and estimate the parameters of windows from image patches. The window types and parameters are then assembled into procedural grammar. A simple procedural engine is built inside an existing 3D modeling software, producing fine-grained window geometries. To obtain a useful model from a few labeled samples, we leverage the generative adversarial network to train the feature extractor in a semi-supervised manner. The adversarial training strategy can also exploit unlabeled data to make the training phase more stable. Experiments using publicly available façade image datasets reveal that the proposed training strategy can obtain about 10% improvement in classification accuracy and 50% improvement in parameter estimation under the same network structure. In addition, performance gains are more pronounced when testing against unseen data featuring different façade styles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源