论文标题
通过合成数据增强和解剖人群计数
Enhancing and Dissecting Crowd Counting By Synthetic Data
论文作者
论文摘要
在本文中,我们提出了一个模拟的人群计数数据集Crowdx,该数据集Crowdx具有很大的规模,准确的标签,参数化实现和高保真度。将该数据集用作数据增强的实验结果表明,提出的简化和有效的基准网络ESA-NET的性能可以提高8.4 \%。在Crowdx上预先培训的其他两个经典的异质体系结构MCNN和CSRNET也显示出显着的性能改善。考虑到许多影响因素决定了性能,例如背景,摄像头,人体密度和分辨率。尽管这些因素很重要,但仍然缺乏研究它们如何影响人群计数的研究。多亏了Crowdx数据集,并提供了丰富的注释信息,我们进行了大量数据驱动的比较实验来分析这些因素。我们的研究提供了更深入地了解人群计数问题的参考,并在算法的实际部署中提出了一些有用的建议。
In this article, we propose a simulated crowd counting dataset CrowdX, which has a large scale, accurate labeling, parameterized realization, and high fidelity. The experimental results of using this dataset as data enhancement show that the performance of the proposed streamlined and efficient benchmark network ESA-Net can be improved by 8.4\%. The other two classic heterogeneous architectures MCNN and CSRNet pre-trained on CrowdX also show significant performance improvements. Considering many influencing factors determine performance, such as background, camera angle, human density, and resolution. Although these factors are important, there is still a lack of research on how they affect crowd counting. Thanks to the CrowdX dataset with rich annotation information, we conduct a large number of data-driven comparative experiments to analyze these factors. Our research provides a reference for a deeper understanding of the crowd counting problem and puts forward some useful suggestions in the actual deployment of the algorithm.