论文标题

Histgnn:用于天气预报的层次时空图形神经网络

HiSTGNN: Hierarchical Spatio-temporal Graph Neural Networks for Weather Forecasting

论文作者

Ma, Minbo, Xie, Peng, Teng, Fei, Li, Tianrui, Wang, Bin, Ji, Shenggong, Zhang, Junbo

论文摘要

天气预报是一项有吸引力的挑战性任务,因为它对人类生活和大气运动的复杂性的影响。在大量历史观察到的时间序列数据的支持下,该任务适用于数据驱动的方法,尤其是深度神经网络。最近,基于图神经网络(GNN)方法在时空预测方面取得了出色的性能。但是,基于规范的GNN的方法仅分别对每个站的气象变量的局部图或整个站的全局图进行建模,从而在不同站点中缺乏气象变量之间的信息相互作用。在本文中,我们提出了一种新型的层次时空图形神经网络(Histgnn),以模拟多个电台气象变量之间的跨区域时空相关性。自适应图学习层和空间图卷积用于构建自学习图,并研究可变级别和站点级别图的节点之间的隐藏依赖性。为了捕获时间模式,扩张的成立为GATE时间卷积的主干旨在对长而各种气象趋势进行建模。此外,提出了动态的交互学习来构建通过层次图中传递的双向信息。三个现实世界中的气象数据集的实验结果表明,历史固然超过7个基准的卓越性能,这将误差降低了4.2%至11.6%,尤其是与最先进的天气预测方法相比。

Weather Forecasting is an attractive challengeable task due to its influence on human life and complexity in atmospheric motion. Supported by massive historical observed time series data, the task is suitable for data-driven approaches, especially deep neural networks. Recently, the Graph Neural Networks (GNNs) based methods have achieved excellent performance for spatio-temporal forecasting. However, the canonical GNNs-based methods only individually model the local graph of meteorological variables per station or the global graph of whole stations, lacking information interaction between meteorological variables in different stations. In this paper, we propose a novel Hierarchical Spatio-Temporal Graph Neural Network (HiSTGNN) to model cross-regional spatio-temporal correlations among meteorological variables in multiple stations. An adaptive graph learning layer and spatial graph convolution are employed to construct self-learning graph and study hidden dependency among nodes of variable-level and station-level graph. For capturing temporal pattern, the dilated inception as the backbone of gate temporal convolution is designed to model long and various meteorological trends. Moreover, a dynamic interaction learning is proposed to build bidirectional information passing in hierarchical graph. Experimental results on three real-world meteorological datasets demonstrate the superior performance of HiSTGNN beyond 7 baselines and it reduces the errors by 4.2% to 11.6% especially compared to state-of-the-art weather forecasting method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源