论文标题
填充量最小和边界刚度接近负弯曲的对称度量的指标
Filling volume minimality and boundary rigidity of metrics close to a negatively curved symmetric metric
论文作者
论文摘要
本文概括了D. Burago和S. Ivanov在填充数量最小和几乎真正双曲线指标的边界刚度方面的工作。我们表明,近弯曲的对称度量的指标区域是严格的最小填充物,因此是刚性的边界。这包括复杂,Quaternionic和Cayley双曲线指标的扰动。
This paper generalizes D. Burago and S. Ivanov's work on filling volume minimality and boundary rigidity of almost real hyperbolic metrics. We show that regions with metrics close to a negatively curved symmetric metric are strict minimal fillings and hence boundary rigid. This includes perturbations of complex, quaternionic and Cayley hyperbolic metrics.