论文标题
云计算中使用混合元元式 - 调查的任务调度:评论
Task Scheduling in Cloud Computing Using Hybrid Meta-heuristic: A Review
论文作者
论文摘要
近年来,随着高带宽互联网访问可用性的出现,云计算应用程序蓬勃发展。随着越来越多的应用程序在云上运行,并且增加了不同云平台的整体用户群,因此对高效的工作调度技术的需求也增加了。常规作业调度算法的任务是确定作业的执行顺序,该作业使用时间,处理,内存等最少的资源。通常,用户需要更多的服务和非常高的效率。有效的调度技术有助于正确利用资源。在这项研究领域中,事实证明,混合元元元素算法在优化任务计划方面非常有效,而不是单独使用时提供更好的成本效率。这项研究对云计算中的任务调度技术进行了系统的广泛分析,该技术使用元数据的各种混合变体,例如遗传算法,tabu搜索,和谐搜索,人造蜜蜂群,粒子群的优化等。在本研究评论中,分别讨论了整个性能评估的单独使用。
In recent years with the advent of high bandwidth internet access availability, the cloud computing applications have boomed. With more and more applications being run over the cloud and an increase in the overall user base of the different cloud platforms, the need for highly efficient job scheduling techniques has also increased. The task of a conventional job scheduling algorithm is to determine a sequence of execution for the jobs, which uses the least resources like time, processing, memory, etc. Generally, the user requires more services and very high efficiency. An efficient scheduling technique helps in proper utilization of the resources. In this research realm, the hybrid meta-heuristic algorithms have proven to be very effective in optimizing the task scheduling by providing better cost efficiency than when singly employed. This study presents a systematic and extensive analysis of task scheduling techniques in cloud computing using the various hybrid variants of meta-heuristic methods, like Genetic Algorithm, Tabu Search, Harmony Search, Artificial Bee Colony, Particle Swarm Optimization, etc. In this research review, a separate section discusses the use of various performance evaluation metrics throughout the literature.