论文标题

$ t^*rp2 $的Lagrangians的独特性

Uniqueness of Lagrangians in $T^*RP2$

论文作者

Adaloglou, Nikolaos

论文摘要

我们提供了一个新的简单证明,证明了任何Lagrangian $ \ Mathbb {r} p^2 $ in $ t^*\ mathbb {r} p^2 $ is Hamiltonian同位素至零部分。我们的证明反映了李和吴为$ t^*s^2 $中的哈密顿独特性提供的,使用手术将拉格朗日球变成符合性的唯一性。主要的新颖贡献是一个详细的证明,表明,可以用$ \ mathbb {r} p^2 $的单位cotangengent圆盘套件来识别$ \ mathbb {c} p^2 $中符号四边形的补充。

We present a new and simpler proof of the fact that any Lagrangian $\mathbb{R}P^2$ in $T^*\mathbb{R}P^2$ is Hamiltonian isotopic to the zero section. Our proof mirrors the one given by Li and Wu for the Hamiltonian uniqueness of Lagrangians in $T^*S^2$, using surgery to turn Lagrangian spheres into symplectic ones. The main novel contribution is a detailed proof of the folklore fact that the complement of a symplectic quadric in $\mathbb{C}P^2$ can be identified with the unit cotangent disc bundle of $\mathbb{R}P^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源