论文标题

使用应用程序的基于强大小波的缩放评估

Robust Wavelet-based Assessment of Scaling with Applications

论文作者

Hamilton, Erin K., Jeon, Seonghye, Cobo, Pepa Ramirez, Lee, Kichun Sky, Vidakovic, Brani

论文摘要

许多方法涉及自相似性的统计评估,其中许多方法基于多尺度概念。大多数人依靠某些通常由真实数据迹线违反的分布假设,通常以较大的时间或空间平均水平变化,缺失值或极端观察为特征。提出了一种基于Theil型加权回归的新颖,可靠的方法,用于估计二维数据中的自相似性(图像)。将该方法与两种使用小波分解的传统估计技术进行了比较。普通的最小二乘(OLS)和Abry-Veitch偏置校正估计量(AV)。作为一种应用,由健壮方法引起的自相似性估计值的适用性被说明为数字化乳房X线照片图像分类为癌变或非癌性的预测特征。此处采用的诊断是基于图像背景的特性,这通常是乳腺癌筛查中未使用的方式。分类结果显示,近68%的精度,随着小波的选择以及所使用的多分辨率水平的范围略有变化。

A number of approaches have dealt with statistical assessment of self-similarity, and many of those are based on multiscale concepts. Most rely on certain distributional assumptions which are usually violated by real data traces, often characterized by large temporal or spatial mean level shifts, missing values or extreme observations. A novel, robust approach based on Theil-type weighted regression is proposed for estimating self-similarity in two-dimensional data (images). The method is compared to two traditional estimation techniques that use wavelet decompositions; ordinary least squares (OLS) and Abry-Veitch bias correcting estimator (AV). As an application, the suitability of the self-similarity estimate resulting from the the robust approach is illustrated as a predictive feature in the classification of digitized mammogram images as cancerous or non-cancerous. The diagnostic employed here is based on the properties of image backgrounds, which is typically an unused modality in breast cancer screening. Classification results show nearly 68% accuracy, varying slightly with the choice of wavelet basis, and the range of multiresolution levels used.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源