论文标题

Zeon矩阵的光谱定理

A Spectral Theorem for Zeon Matrices

论文作者

Staples, G. Stacey

论文摘要

在本文中,建立了具有(复杂)Zeon条目的矩阵的光谱定理。特别是,当$ a $是一个$ m $ a $时,$ a $ a $ hexexhoind矩阵的特征多项式$χ_a(u)$ $ apl zeon algebra $ {\ mathbb {c} \ mathfrak {z}}} _ n $ $ m $ $ $独立归一化Zeon eigenVectors $ v_1,\ ldots,v_m $,使得$ a = \ bigoplus_ {j = 1}^mλ_jπ_j$,其中$π_j= v_j {v_j {v_j}^†$是Zeon sumpodule $ $ {\ rm span} \ {v_j \} $ for $ j = 1,\ ldots,m $。

In this paper, a spectral theorem for matrices with (complex) zeon entries is established. In particular, it is shown that when $A$ is an $m\times m$ self-adjoint matrix whose characteristic polynomial $χ_A(u)$ "splits" over the zeon algebra ${\mathbb{C}\mathfrak{Z}}_n$, there exist $m$ spectrally simple eigenvalues $λ_1, \ldots, λ_m$ and $m$ linearly independent normalized zeon eigenvectors $v_1, \ldots, v_m$ such that $A=\bigoplus_{j=1}^m λ_jπ_j$, where $π_j=v_j{v_j}^†$ is a rank-one projection onto the zeon submodule ${\rm span}\{v_j\}$ for $j=1, \ldots, m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源