论文标题

Miseval:用于医学图像分割评估的公制库

MISeval: a Metric Library for Medical Image Segmentation Evaluation

论文作者

Müller, Dominik, Hartmann, Dennis, Meyer, Philip, Auer, Florian, Soto-Rey, Iñaki, Kramer, Frank

论文摘要

正确的绩效评估对于评估医学中的现代人工智能算法(例如基于深度学习的医学图像分割模型)至关重要。但是,Python中没有通用度量库可用于标准化和可再现的评估。因此,我们提出了我们的开放源代码Python软件包Misesval:用于医疗图像细分评估的度量库。实施的指标可以直观地使用并轻松整合到任何性能评估管道中。该软件包利用现代CI/CD策略来确保功能和稳定性。 Miseval可从PYPI(Miseval)和Github获得:https://github.com/frankkramer-lab/miseval。

Correct performance assessment is crucial for evaluating modern artificial intelligence algorithms in medicine like deep-learning based medical image segmentation models. However, there is no universal metric library in Python for standardized and reproducible evaluation. Thus, we propose our open-source publicly available Python package MISeval: a metric library for Medical Image Segmentation Evaluation. The implemented metrics can be intuitively used and easily integrated into any performance assessment pipeline. The package utilizes modern CI/CD strategies to ensure functionality and stability. MISeval is available from PyPI (miseval) and GitHub: https://github.com/frankkramer-lab/miseval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源