论文标题

在边界条件下耦合的狄拉克系统上

On Coupled Dirac Systems under Boundary Condition

论文作者

Yang, Xu, Li, Xin

论文摘要

在本文中,我们研究了Dirac Systems \ begin {equation} \ label {e:0.1} \ left \ {\ begin {array} {c}的解决方案的存在。 pu = \ frac {\ partial h} {\ partial v}(x,u,v)\ quad \ hbox {on} \ m, pv = \ frac {\ partial h} {\ partial u}(x,u,v)\ quad \ hbox {on} \ m, b _ {\ text {chi}} u = b _ {\ text {chi}} v = 0 \ quad \ hbox {on} \ \ \ partial m \ end m \ end end {array} \ right。 \ end {equation}其中$ m $是$ m $二维紧凑型的riemannian旋转歧管,带有光滑边界$ \部分m $,$ p $是在边界条件$ b _ {\ text {chi}} {chi}} { c^{\ infty}(m,σm)$是旋转器。使用分数Sobolev空间的适当产物的分析框架,获得了耦合Dirac系统的解决方案结果,以实现超质量生长速率的非线性。

In this article we study the existence of solutions for the Dirac systems \begin{equation}\label{e:0.1} \left\{ \begin{array}{c} Pu=\frac{\partial H}{\partial v}(x,u,v) \quad\hbox{on} \ M, Pv=\frac{\partial H}{\partial u}(x,u,v) \quad\hbox{on} \ M, B_{\text{CHI}}u= B_{\text{CHI}}v=0\quad\hbox{on} \ \partial M \end{array} \right. \end{equation} where $M$ is an $m$-dimensional compact oriented Riemannian spin manifold with smooth boundary $\partial M$, $P$ is the Dirac operator under the boundary condition $B_{\text{CHI}}u= B_{\text{CHI}}v=0$ on $\partial M$, $ u,v\in C^{\infty}(M,ΣM)$ are spinors. Using an analytic framework of proper products of fractional Sobolev spaces, the solutions existence results of the coupled Dirac systems are obtained for nonlinearity with superquadratic growth rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源