论文标题
在尖锐的gevrey规律性上,以概括梅蒂维尔操作员
On the sharp Gevrey regularity for a generalization of the Métivier operator
论文作者
论文摘要
为Métivier操作员的以下概括提供了尖锐的gevrey降低性,“非hypoellipticitéAnalytiquepour pour $ d_ {x}^{2}^{2} + \ left(x^{2} + y^{2} + y^{2} {2} {2} \ right) d_ {x}^{2}+\ left(x^{2n+1} d_ {y} \ right)^{2}+\ lest(x^{n} y^{m} y^{m} d_ {y} d_ {y} \ right) $ \ mathbb {r}^{2} $,其中$ n $和$ m $是正整数。
The sharp Gevrey hypoellipticity is provided for the following generalization of the Métivier operator, "Non-hypoellipticité analytique pour $D_{x}^{2}+\left( x^{2} + y^{2}\right)D_{y}^{2}$" by G. Métivier, \begin{align*} D_{x}^{2}+\left(x^{2n+1}D_{y}\right)^{2}+\left(x^{n}y^{m}D_{y}\right)^{2}, \end{align*} in $Ω$ open neighborhood of the origin in $\mathbb{R}^{2}$, where $n$ and $m$ are positive integers.