论文标题

在能量模型网络中传播不确定性

Propagating uncertainty in a network of energy models

论文作者

Volodina, Victoria, Sonenberg, Nikki, Smith, Jim Q., Challenor, Peter G., Dent, Chris J., Wynn, Henry P.

论文摘要

计算机模型广泛用于能源系统操作,计划和政策的决策支持中。通常采用模型系统,其中模型输入本身是由其他计算机模型引起的,每个模型都是由不同的专家团队开发的。高斯工艺模拟器可用于近似复杂,计算密集型模型的行为,并用于生成预测以及对预测模型输出的不确定性的度量。本文提出了一个具有计算高效的框架,用于在具有高维输出用于能源计划的模型网络中传播不确定性。我们提出了一项来自英国县议会的案例研究,该案例研究考虑了低碳技术以改变其基础设施以达到净零碳目标。该案例研究考虑的系统模型很简单,但是该框架可以应用于更复杂模型的较大网络。

Computer models are widely used in decision support for energy systems operation, planning and policy. A system of models is often employed, where model inputs themselves arise from other computer models, with each model being developed by different teams of experts. Gaussian Process emulators can be used to approximate the behaviour of complex, computationally intensive models and used to generate predictions together with a measure of uncertainty about the predicted model output. This paper presents a computationally efficient framework for propagating uncertainty within a network of models with high-dimensional outputs used for energy planning. We present a case study from a UK county council considering low carbon technologies to transform its infrastructure to reach a net-zero carbon target. The system model considered for this case study is simple, however the framework can be applied to larger networks of more complex models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源