论文标题

随机字段优化

Random Field Optimization

论文作者

Pulsipher, Joshua L., Davidson, Benjamin R., Zavala, Victor M.

论文摘要

我们提出了一种新的建模范式,以进行优化,我们称之为随机字段优化。随机字段是一种强大的建模抽象,旨在捕获生存在无限维空间(例如时空和时间)上的随机变量的行为,例如随机过程(例如时间序列,高斯过程和马尔可夫过程),随机矩阵和随机空间领域。该范式涉及复杂的数学对象(例如随机微分方程和时空内核函数),并已广泛用于神经科学,地球科学,物理,土木工程和计算机图形。但是,尽管如此,随机字段在优化中的使用有限。具体而言,涉及不确定性(例如随机编程和强大优化)的现有优化范式主要集中在使用有限随机变量上。随着统计优化的出现(例如贝叶斯优化)和多尺度优化(例如,分子科学和过程工程的整合),这种趋势正在迅速变化。我们的工作通过捕获更普遍的不确定性表示,扩展了最近提出的无限维度优化问题的抽象。此外,我们讨论了基于有限转换和抽样的新类问题的解决方案范例,并确定了开放的问题和挑战。

We present a new modeling paradigm for optimization that we call random field optimization. Random fields are a powerful modeling abstraction that aims to capture the behavior of random variables that live on infinite-dimensional spaces (e.g., space and time) such as stochastic processes (e.g., time series, Gaussian processes, and Markov processes), random matrices, and random spatial fields. This paradigm involves sophisticated mathematical objects (e.g., stochastic differential equations and space-time kernel functions) and has been widely used in neuroscience, geoscience, physics, civil engineering, and computer graphics. Despite of this, however, random fields have seen limited use in optimization; specifically, existing optimization paradigms that involve uncertainty (e.g., stochastic programming and robust optimization) mostly focus on the use of finite random variables. This trend is rapidly changing with the advent of statistical optimization (e.g., Bayesian optimization) and multi-scale optimization (e.g., integration of molecular sciences and process engineering). Our work extends a recently-proposed abstraction for infinite-dimensional optimization problems by capturing more general uncertainty representations. Moreover, we discuss solution paradigms for this new class of problems based on finite transformations and sampling, and identify open questions and challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源