论文标题

使用非线性生成模型的贝叶斯推断:有关安全学习的评论

Bayesian Inference with Nonlinear Generative Models: Comments on Secure Learning

论文作者

Bereyhi, Ali, Loureiro, Bruno, Krzakala, Florent, Müller, Ralf R., Schulz-Baldes, Hermann

论文摘要

与经典线性模型不同,非线性生成模型在统计学习的文献中被稀疏地解决。这项工作旨在引起对这些模型及其保密潜力的关注。为此,我们调用复制方法,以在一个反概率问题中得出渐近归一化的横熵,其生成模型由具有通用协方差函数的高斯随机场描述。我们的推导进一步证明了贝叶斯估计量的渐近统计解耦,并为给定的非线性模型指定了解耦设置。 复制解决方案描述了严格的非线性模型建立了全有或全无的相变:存在一个关键负载,最佳贝叶斯推断从完美的学习变为不相关的学习。基于这一发现,我们设计了一种新的安全编码方案,该方案可实现窃听通道的保密能力。这个有趣的结果意味着,严格的非线性生成模型是完美的,没有任何安全的编码。我们通过分析说明性模型的完美安全和可靠的推论来证明后一种陈述是合理的。

Unlike the classical linear model, nonlinear generative models have been addressed sparsely in the literature of statistical learning. This work aims to bringing attention to these models and their secrecy potential. To this end, we invoke the replica method to derive the asymptotic normalized cross entropy in an inverse probability problem whose generative model is described by a Gaussian random field with a generic covariance function. Our derivations further demonstrate the asymptotic statistical decoupling of the Bayesian estimator and specify the decoupled setting for a given nonlinear model. The replica solution depicts that strictly nonlinear models establish an all-or-nothing phase transition: There exists a critical load at which the optimal Bayesian inference changes from perfect to an uncorrelated learning. Based on this finding, we design a new secure coding scheme which achieves the secrecy capacity of the wiretap channel. This interesting result implies that strictly nonlinear generative models are perfectly secured without any secure coding. We justify this latter statement through the analysis of an illustrative model for perfectly secure and reliable inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源