论文标题

碳资源管理器:一种设计碳知识数据中心的整体方法

Carbon Explorer: A Holistic Approach for Designing Carbon Aware Datacenters

论文作者

Acun, Bilge, Lee, Benjamin, Kazhamiaka, Fiodar, Maeng, Kiwan, Chakkaravarthy, Manoj, Gupta, Udit, Brooks, David, Wu, Carole-Jean

论文摘要

技术公司通过投资可再生能源来减少其数据中心的碳足迹,从而引领着可再生能源转型的道路。除了帮助建造新的太阳能和风电场之外,公司还制定了采购协议或购买碳碳的偏移,而不是每天的每一天,每天的每一天(24/7)依靠可再生能源。由于风能和太阳能的间歇性质,依赖24/7的可再生能源具有挑战性。太阳能和风能生产的固有变化会导致不同时间过量或缺乏供应。为了应对可再生能源产生的波动,必须应用多种溶液。其中包括:容量大小,结合了太阳能和风能,储能选项和碳意识量工作负载计划。但是,根据区域和数据中心工作负载特征,碳最佳解决方案有所不同。在这个领域的现有工作并不能整体看出每种解决方案的权衡,并且经常忽略解决方案的具体碳成本。在这项工作中,我们提供了一个框架碳纤维资源管理器,通过考虑解决方案的操作和体现足迹来分析多维解决方案空间,以帮助使数据中心在可再生能源上24/7进行操作。我们分析的解决方案包括容量尺寸,包括太阳能和风能,电池存储和碳意识工作负载调度,这需要将工作量从缺乏可再生供应到充足的时代的时间转移到时间上。

Technology companies have been leading the way to a renewable energy transformation, by investing in renewable energy sources to reduce the carbon footprint of their datacenters. In addition to helping build new solar and wind farms, companies make power purchase agreements or purchase carbon offsets, rather than relying on renewable energy every hour of the day, every day of the week (24/7). Relying on renewable energy 24/7 is challenging due to the intermittent nature of wind and solar energy. Inherent variations in solar and wind energy production causes excess or lack of supply at different times. To cope with the fluctuations of renewable energy generation, multiple solutions must be applied. These include: capacity sizing with a mix of solar and wind power, energy storage options, and carbon aware workload scheduling. However, depending on the region and datacenter workload characteristics, the carbon-optimal solution varies. Existing work in this space does not give a holistic view of the trade-offs of each solution and often ignore the embodied carbon cost of the solutions. In this work, we provide a framework, Carbon Explorer, to analyze the multi-dimensional solution space by taking into account operational and embodided footprint of the solutions to help make datacenters operate on renewable energy 24/7. The solutions we analyze include capacity sizing with a mix of solar and wind power, battery storage, and carbon aware workload scheduling, which entails shifting the workloads from times when there is lack of renewable supply to times with abundant supply.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源