论文标题
学习资源分配策略从与无家可归者服务应用程序的观察数据中
Learning Resource Allocation Policies from Observational Data with an Application to Homeless Services Delivery
论文作者
论文摘要
我们从观察数据,公平和可解释的政策中学习学习问题,这些政策有效地与异质的个体相匹配,以稀缺不同类型的资源。我们将这个问题建模为一个多级多服务器排队系统,随着时间的流逝,个人和资源都随机到达。到达后,每个人都被分配到一个队列中,在那里他们等待与资源匹配。根据编码为每个队列的资源类型编码的资格结构,以先到先得(FCFS)方式分配资源。我们提出了一种基于现代因果推理技术的方法,以构建单个队列,并学习匹配结果并提供混合成分优化(MIO)公式,以优化资格结构。 MIO问题最大化政策结果受到等待时间和公平限制的主题。它非常灵活,允许其他线性域约束。我们使用合成和现实世界数据进行了广泛的分析。特别是,我们使用美国无家可归者管理信息系统(HMI)的数据评估了我们的框架。我们获得的等待时间与FCFS政策一样低,同时提高了服务不足或弱势群体的无家可归者的退出率(黑人个体高7%,而17岁以下的人则高出15%)。
We study the problem of learning, from observational data, fair and interpretable policies that effectively match heterogeneous individuals to scarce resources of different types. We model this problem as a multi-class multi-server queuing system where both individuals and resources arrive stochastically over time. Each individual, upon arrival, is assigned to a queue where they wait to be matched to a resource. The resources are assigned in a first come first served (FCFS) fashion according to an eligibility structure that encodes the resource types that serve each queue. We propose a methodology based on techniques in modern causal inference to construct the individual queues as well as learn the matching outcomes and provide a mixed-integer optimization (MIO) formulation to optimize the eligibility structure. The MIO problem maximizes policy outcome subject to wait time and fairness constraints. It is very flexible, allowing for additional linear domain constraints. We conduct extensive analyses using synthetic and real-world data. In particular, we evaluate our framework using data from the U.S. Homeless Management Information System (HMIS). We obtain wait times as low as an FCFS policy while improving the rate of exit from homelessness for underserved or vulnerable groups (7% higher for the Black individuals and 15% higher for those below 17 years old) and overall.