论文标题

ARPD:使用Topiview Fisheye摄像头无锚旋转的人检测

ARPD: Anchor-free Rotation-aware People Detection using Topview Fisheye Camera

论文作者

Minh, Quan Nguyen, Van, Bang Le, Nguyen, Can, Le, Anh, Nguyen, Viet Dung

论文摘要

人们在高层观察中的发现,鱼眼图像具有挑战性,因为鱼眼图像中的人们经常出现在任意方向上,并且扭曲的方式不同。由于这种独特的径向几何形状,轴线一致的人探测器通常在鱼眼框架上工作效果不佳。最近的工作通过修改现有基于锚的检测器或依靠复杂的预/后处理来解释这种变异性。基于锚的方法在输入图像上扩展了一组预定义的边界框,其中大多数是无效的。除了效率低下,这种方法还可能导致正锚和负锚箱之间的显着失衡。在这项工作中,我们提出了ARPD,这是一个无阶段的无锚式完全卷积网络,以检测鱼眼图像中任意旋转的人。我们的网络使用按键点估计找到每个对象的中心点并直接回归对象的其他属性。为了捕获鱼眼摄像机的各种方向,除了中心和大小外,ARPD还预测了每个边界框的角度。我们还提出了一个定期损失函数,该功能解释了角度周期性,并减轻了学习小角度振荡的困难。实验结果表明,我们的方法与最先进的算法竞争,同时运行速度明显更快。

People detection in top-view, fish-eye images is challenging as people in fish-eye images often appear in arbitrary directions and are distorted differently. Due to this unique radial geometry, axis-aligned people detectors often work poorly on fish-eye frames. Recent works account for this variability by modifying existing anchor-based detectors or relying on complex pre/post-processing. Anchor-based methods spread a set of pre-defined bounding boxes on the input image, most of which are invalid. In addition to being inefficient, this approach could lead to a significant imbalance between the positive and negative anchor boxes. In this work, we propose ARPD, a single-stage anchor-free fully convolutional network to detect arbitrarily rotated people in fish-eye images. Our network uses keypoint estimation to find the center point of each object and regress the object's other properties directly. To capture the various orientation of people in fish-eye cameras, in addition to the center and size, ARPD also predicts the angle of each bounding box. We also propose a periodic loss function that accounts for angle periodicity and relieves the difficulty of learning small-angle oscillations. Experimental results show that our method competes favorably with state-of-the-art algorithms while running significantly faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源