论文标题
改善GRB的积分/SPI数据分析
Improving INTEGRAL/SPI data analysis of GRBs
论文作者
论文摘要
Integral/spi是一种自2002年以来在MEV Energy范围内观察的编码蒙版仪器,它涵盖了大多数Gamma-ray爆发(GRB)的$νfν$光谱的峰值。自2008年推出以来,费米/GBM一直是分析$ \ $ \ $ 10 kev至$ \ $ \ $ \ $ 10 mev的GRB的主要工具。本文中,我们表明,覆盖类似能量范围的SPI如果使用高级分析方法,则可以为某些参数提供等效约束的结果。同样,将两种仪器的数据组合在一起还可以减少光谱拟合中允许的参数空间。与GBM相比,SPI的主要优势是$ \ $ \ $ \ $ \ $ 0.2 \%在1.3 meV时,而GBM的能源分辨率约为$ \ $ \ $ 10 \%。因此,SPI是精确测量光谱曲率的理想仪器。这很重要,因为近年来已经表明,应适合GRB数据的物理模型而不是启发式功能,以获得对其仍然未知的发射机制的更好见解,并且峰的曲率对于不同的物理模型是独特的。为了拟合物理模型SPI GRB数据并从数据中获取最大信息,我们开发了一个新的开源分析软件{\ tt pyspi}。我们将这些新技术应用于GRB 120711a,以验证和展示{\ tt pyspi}的功能。我们表明,与{\ tt osa}分析相比,{\ tt pyspi}改进了SPI GRB数据的分析。此外,我们证明了该GRB的GBM和SPI数据可以与物理同步器模型一起拟合。这表明SPI可以在GRB光谱模型拟合中发挥重要作用。
INTEGRAL/SPI is a coded mask instrument observing since 2002 in the keV to MeV energy range, which covers the peak of the $νFν$ spectrum of most Gamma-Ray Bursts (GRBs). Since its launch in 2008, Fermi/GBM has been the primary instrument for analyzing GRBs in the energy range between $\approx$ 10 keV to $\approx$ 10 MeV. Herein, we show that SPI, covering a similar energy range, can give equivalently constraining results for some parameters if we use an advanced analysis method. Also, combining the data of both instruments reduces the allowed parameter space in spectral fits. The main advantage of SPI as compared to GBM is the energy resolution of $\approx$ 0.2\% at 1.3 MeV compared to $\approx$ 10\% for GBM. Therefore, SPI is an ideal instrument to precisely measure the curvature of the spectrum. This is important, as it has been shown in recent years that physical models rather than heuristic functions should be fit to GRB data to obtain better insights into their still unknown emission mechanism, and the curvature of the peak is unique to the different physical models. To fit physical models to SPI GRB data and get the maximal amount of information from the data, we developed a new open source analysis software {\tt PySPI}. We apply these new techniques to GRB 120711A in order to validate and showcase {\tt PySPI}'s capabilities. We show that {\tt PySPI} improves the analysis of SPI GRB data compared to the {\tt OSA} analysis. In addition, we demonstrate that the GBM and the SPI data of this GRB can be fitted well with a physical synchrotron model. This evinces that SPI can play an important role in GRB spectral model fitting.