论文标题
calliope:伪剪切磁磁水动力学代码与铅笔分解
Calliope: Pseudospectral shearing magnetohydrodynamics code with a pencil decomposition
论文作者
论文摘要
伪光谱方法是一种适用于湍流模拟的高度精确的数值方案。我们已经开发了一个开源的伪代码,\ textsc {\ textsf {calliope}},该代码采用P3DFFT库\ citep {pekurovsky2012},以进行二维(铅笔)数字网格的分解,以执行快速的傅立叶变换。 \ textsc {\ textsf {calliope}}可以解决不可压缩的磁性水力动力学(MHD),等温度可压缩的MHD和旋转的旋转降低MHD,并使用大量核心($> 10^5 $核心$> 10^5 $ cores for $ 2048^3 $ grids)使用并行计算。该代码还可以使用重新映射方法\ citep {rogallo1981,umurhan2004}在剪切框架中求解本地磁性湍流。 \ textsc {\ textsf {calliope}}当前是唯一可以使用铅笔 - 污垢分解来计算磁性湍流的伪色谱。本文介绍了\ textsc {\ textsf {calliope}}的数值方案以及线性和非线性数值测试的结果,包括可压缩的局部磁磁性湍流,迄今报告了最大的网格数。
The pseudospectral method is a highly accurate numerical scheme suitable for turbulence simulations. We have developed an open-source pseudospectral code, \textsc{\textsf{Calliope}}, which adopts the P3DFFT library \citep{Pekurovsky2012} to perform a fast Fourier transform with the two-dimensional (pencil) decomposition of numerical grids. \textsc{\textsf{Calliope}} can solve incompressible magnetohydrodynamics (MHD), isothermal compressible MHD, and rotational reduced MHD with parallel computation using very large numbers of cores ($> 10^5$ cores for $2048^3$ grids). The code can also solve for local magnetorotational turbulence in a shearing frame using the remapping method \citep{Rogallo1981,Umurhan2004}. \textsc{\textsf{Calliope}} is currently the only pseudospectral code that can compute magnetorotational turbulence using pencil-domain decomposition. This paper presents the numerical scheme of \textsc{\textsf{Calliope}} and the results of linear and nonlinear numerical tests, including compressible local magnetorotational turbulence with the largest grid number reported to date.