论文标题
使用图形网络进行时尚的主要产品检测
Main Product Detection with Graph Networks for Fashion
论文作者
论文摘要
计算机视觉已经在在线时尚零售业中建立了立足点。主要产品检测是基于视觉的时尚产品饲料解析管道的关键步骤,重点是识别包含产品页面图像中出售产品的边界框。当前的最新方法不能利用图像中区域之间的关系,并独立处理同一产品的图像,因此无法完全利用视觉和产品上下文信息。在本文中,我们提出了一个模型,该模型结合了图形卷积网络(GCN),该模型共同表示画廊中所有检测到的边界框作为节点。我们表明,所提出的方法比最先进的方法更好,尤其是当我们考虑在推理时间缺少标题输入的方案,而对于跨数据库评估时,我们的方法比以前的方法大得多。
Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused in identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.