论文标题

Aggmatch:汇总半监督学习的伪标签

AggMatch: Aggregating Pseudo Labels for Semi-Supervised Learning

论文作者

Kim, Jiwon, Ryoo, Kwangrok, Lee, Gyuseong, Cho, Seokju, Seo, Junyoung, Kim, Daehwan, Cho, Hansang, Kim, Seungryong

论文摘要

半监督学习(SSL)最近已被证明是利用大量未标记数据的有效范式,同时减轻对大型标记数据的依赖。常规方法着重于从单个未标记的数据样本中提取伪标签,因此它们主要努力处理不准确或嘈杂的伪标签,这些标签是退化性能的。 在本文中,我们使用一个新颖的SSL框架来解决此限制,用于汇总伪标签,称为Aggmatch,该标签通过使用不同的自信实例来完善初始伪标签。具体而言,我们引入了一个集合模块,以实现一致性正则化框架,该模块基于实例之间的相似性汇总初始伪标记。为了将聚合候选者扩大到迷你批次之外,我们提出了一个以动量模型构建的级别平衡的置信度的队列,鼓励提供更稳定和一致的聚合。我们还通过考虑具有不同队列子集的多个假设之间的共识,提出了针对伪标签的新型基于不确定性的置信度度量。我们进行实验,以证明Aggmatch对标准基准的最新方法的有效性,并提供广泛的分析。

Semi-supervised learning (SSL) has recently proven to be an effective paradigm for leveraging a huge amount of unlabeled data while mitigating the reliance on large labeled data. Conventional methods focused on extracting a pseudo label from individual unlabeled data sample and thus they mostly struggled to handle inaccurate or noisy pseudo labels, which degenerate performance. In this paper, we address this limitation with a novel SSL framework for aggregating pseudo labels, called AggMatch, which refines initial pseudo labels by using different confident instances. Specifically, we introduce an aggregation module for consistency regularization framework that aggregates the initial pseudo labels based on the similarity between the instances. To enlarge the aggregation candidates beyond the mini-batch, we present a class-balanced confidence-aware queue built with the momentum model, encouraging to provide more stable and consistent aggregation. We also propose a novel uncertainty-based confidence measure for the pseudo label by considering the consensus among multiple hypotheses with different subsets of the queue. We conduct experiments to demonstrate the effectiveness of AggMatch over the latest methods on standard benchmarks and provide extensive analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源