论文标题
朝向数据驱动的点数雷达
Toward Data-Driven STAP Radar
论文作者
论文摘要
使用经典雷达,计算机视觉和深度学习的技术合并,我们表征了我们正在进行的数据驱动的时空自适应处理(Stap)雷达的方法。我们通过使用RFView在预定的区域中随机将可变强度的目标随机放置在预定的区域中,这是ISL INC开发的特定于网站特定的射频建模和模拟工具。对于该区域内的每个数据样本,我们在范围内生成无限量的范围内的热图量响应(MIV),我们可以在该区域内生成热量量的范围(MV),该数据示例是由ISL INC开发的。所需的测试统计量。这些热图张量可以被认为是堆叠的图像,在空中的情况下,移动的雷达会产生一系列时间索引的图像堆栈,类似于视频。我们的目标是使用这些图像和视频来检测目标并估算其位置,这是一个让人想起对象检测的计算机视觉算法$ - $ - $,即,基于区域的基于区域更快的卷积神经网络(更快的R-CNN)。更快的R-CNN由一个提案生成网络组成,用于确定利益区域(ROI),一个用于定位目标锚定框的回归网络以及对象分类算法;它是针对自然图像开发和优化的。我们正在进行的研究将开发用于雷达数据的热图图像的类似工具。在这方面,我们将生成一个大型代表性的自适应雷达信号处理数据库,用于训练和测试,在精神上类似于可可数据集以获取自然图像。作为初步示例,我们在本文中提出了一个回归网络,用于估算目标位置,以证明我们的数据驱动方法提供的可行性和显着改进的可行性。
Using an amalgamation of techniques from classical radar, computer vision, and deep learning, we characterize our ongoing data-driven approach to space-time adaptive processing (STAP) radar. We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region using RFView, a site-specific radio frequency modeling and simulation tool developed by ISL Inc. For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a minimum variance distortionless response (MVDR) beamformer, which can be replaced with a desired test statistic. These heatmap tensors can be thought of as stacked images, and in an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video. Our goal is to use these images and videos to detect targets and estimate their locations, a procedure reminiscent of computer vision algorithms for object detection$-$namely, the Faster Region-Based Convolutional Neural Network (Faster R-CNN). The Faster R-CNN consists of a proposal generating network for determining regions of interest (ROI), a regression network for positioning anchor boxes around targets, and an object classification algorithm; it is developed and optimized for natural images. Our ongoing research will develop analogous tools for heatmap images of radar data. In this regard, we will generate a large, representative adaptive radar signal processing database for training and testing, analogous in spirit to the COCO dataset for natural images. As a preliminary example, we present a regression network in this paper for estimating target locations to demonstrate the feasibility of and significant improvements provided by our data-driven approach.