论文标题
物理知识的Convnet:从浅神经网络学习物理领域
Physics-informed ConvNet: Learning Physical Field from a Shallow Neural Network
论文作者
论文摘要
基于大数据的人工智能(AI)几乎支持所有科学技术的深刻发展。但是,由于不可避免的数据稀缺和噪声,建模和预测多物理系统仍然是一个挑战。通过“教学”领域知识和开发新一代模型与物理定律相结合,提高神经网络的概括能力已成为机器学习研究的有前途的领域。从CNN的角度,建议使用带有物理信息的“深”完全连接的神经网络(PINN)(PINN),一个新型的浅框架,名为“物理信息有形的卷积网络”(PICN),从CNN角度来看,在该角度上,该物理场是由反向倾斜层和单个卷积层产生的。形成物理操作员的差异场是使用预训练的浅卷积层构造的。有效的线性插值网络计算涉及边界条件和不规则几何域中物理约束的损耗函数。通过一些数值案例,涉及非线性物理操作员方程(和估计)的一些数值案例来说明当前发展的有效性,并从嘈杂的观察结果中恢复了物理信息。它在具有多频率组件的近似物理领域的潜在优势表明,PICN可能会成为物理知识的机器学习中的替代性神经网络求解器。
Big-data-based artificial intelligence (AI) supports profound evolution in almost all of science and technology. However, modeling and forecasting multi-physical systems remain a challenge due to unavoidable data scarcity and noise. Improving the generalization ability of neural networks by "teaching" domain knowledge and developing a new generation of models combined with the physical laws have become promising areas of machine learning research. Different from "deep" fully-connected neural networks embedded with physical information (PINN), a novel shallow framework named physics-informed convolutional network (PICN) is recommended from a CNN perspective, in which the physical field is generated by a deconvolution layer and a single convolution layer. The difference fields forming the physical operator are constructed using the pre-trained shallow convolution layer. An efficient linear interpolation network calculates the loss function involving boundary conditions and the physical constraints in irregular geometry domains. The effectiveness of the current development is illustrated through some numerical cases involving the solving (and estimation) of nonlinear physical operator equations and recovering physical information from noisy observations. Its potential advantage in approximating physical fields with multi-frequency components indicates that PICN may become an alternative neural network solver in physics-informed machine learning.