论文标题
哈利斯科的多类土地覆盖分析和分类,使用具有真实世界和救济数据的新型轻量级弯曲
Jalisco's multiclass land cover analysis and classification using a novel lightweight convnet with real-world multispectral and relief data
论文作者
论文摘要
对全球气候变化,农业弹性和森林砍伐控制的理解取决于对土地使用和土地覆盖变化(LULCC)的及时观察。最近,已经对一些深度学习(DL)方法进行了调整,以对全球和同质数据进行自动分类(LC)。但是,这些DL模型中的大多数无法有效地应用于现实世界数据。即大量类别,多季节数据,不同的气候区域,高失衡标签数据集和低空间分辨率。在这项工作中,我们介绍了新颖的轻质(仅89K参数)卷积神经网络(Convnet),以进行LC分类和分析,以解决Jalisco地区的这些问题。与全球方法相反,区域数据提供了决策者计划土地使用和管理,保护领域或生态系统服务所需的上下文特异性。在这项工作中,我们结合了三个现实世界的开放数据源以获得13个渠道。我们的嵌入式分析预测某些课程的性能有限,因此我们有机会将测试准确性的性能从73%增加到83%。我们希望这项研究可以帮助其他地区群体有限的数据源或计算资源,以实现有关土地生活的联合国可持续发展目标(SDG)。
The understanding of global climate change, agriculture resilience, and deforestation control rely on the timely observations of the Land Use and Land Cover Change (LULCC). Recently, some deep learning (DL) methods have been adapted to make an automatic classification of Land Cover (LC) for global and homogeneous data. However, most of these DL models can not apply effectively to real-world data. i.e. a large number of classes, multi-seasonal data, diverse climate regions, high imbalance label dataset, and low-spatial resolution. In this work, we present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis to handle these problems for the Jalisco region. In contrast to the global approaches, the regional data provide the context-specificity that is required for policymakers to plan the land use and management, conservation areas, or ecosystem services. In this work, we combine three real-world open data sources to obtain 13 channels. Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar, as a result, the test accuracy performance increase from 73 % to 83 %. We hope that this research helps other regional groups with limited data sources or computational resources to attain the United Nations Sustainable Development Goal (SDG) concerning Life on Land.