论文标题

磁性Neumann和Steklov问题Aharonov-bohm磁性电位的磁性不平等问题

Isoperimetric inequalities for the magnetic Neumann and Steklov problems with Aharonov-Bohm magnetic potential

论文作者

Colbois, Bruno, Provenzano, Luigi, Savo, Alessandro

论文摘要

我们讨论了具有aharonov-bohm电位的$ \ mathbb r^2 $的有限域上的磁性拉普拉斯元素的等等不平等。当极点周围的电势不是整数时,Neumann和Steklov问题的最低特征值是正面的。我们在Szegö-Weinberger,Brock和Weinstock的经典不平等精神的精神上为最低特征值建立了等级不平等现象,模型域是一个磁盘,其极点位于其中心。我们考虑具有旋转不变的度量的平面中的更一般的域,其中包括球形和双曲线情况。

We discuss isoperimetric inequalities for the magnetic Laplacian on bounded domains of $\mathbb R^2$ endowed with an Aharonov-Bohm potential. When the flux of the potential around the pole is not an integer, the lowest eigenvalue for the Neumann and the Steklov problems is positive. We establish isoperimetric inequalitites for the lowest eigenvalue in the spirit of the classical inequalities of Szegö-Weinberger, Brock and Weinstock, the model domain being a disk with the pole at its center. We consider more generally domains in the plane endowed with a rotationally invariant metric, which include the spherical and the hyperbolic case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源