论文标题
使用深度学习的二进制黑洞结合的快速质量参数估计
Rapid Mass Parameter Estimation of Binary Black Hole Coalescences Using Deep Learning
论文作者
论文摘要
深度学习可用于大大减少紧凑型物体的二进制二进制物的参数估计的处理时间,包括在重力波(GWS)中检测到的黑洞和中子星。作为第一步,我们提出了两个神经网络模型,该模型从Ligo Hanford和Livingston Persvatories的GW菌株数据中迅速估计了CHIRP质量和质量比的后验分布和质量比。使用这些参数可以预测组分质量,这对合并包含中子星的可能性的预测有影响。将结果与Ligo-Virgo协作(LVC),LALINFERY使用的重力波参数估计的“黄金标准”进行了比较。我们的模型预测后分布与lalinference一致的后分布,同时使用训练模型后使用数量级的处理时间较小。当在LVC的第一和第二观察过程中检测到的实际二进制黑洞事件测试时,对所有预测参数的LAinenference的中值预测在90%的可信间隔内。我们认为,深度学习具有适用于实时GW搜索管道的低延迟高准确参数估计的强大潜力。
Deep learning can be used to drastically decrease the processing time of parameter estimation for coalescing binaries of compact objects including black holes and neutron stars detected in gravitational waves (GWs). As a first step, we present two neural network models trained to rapidly estimate the posterior distributions of the chirp mass and mass ratio of a detected binary black hole system from the GW strain data of LIGO Hanford and Livingston Observatories. Using these parameters the component masses can be predicted, which has implications for the prediction of the likelihood that a merger contains a neutron star. The results are compared to the 'gold standard' of parameter estimation of gravitational waves used by the LIGO-Virgo Collaboration (LVC), LALInference. Our models predict posterior distributions consistent with that from LALInference while using orders of magnitude less processing time once the models are trained. The median predictions are within the 90% credible intervals of LALInference for all predicted parameters when tested on real binary black hole events detected during the LVC's first and second observing runs. We argue that deep learning has strong potential for low-latency high-accuracy parameter estimation suitable for real-time GW search pipelines.