论文标题
部分可观测时空混沌系统的无模型预测
Stability of Big Solitons in a Competitive Power Nonlinear Schrödinger Equation
论文作者
论文摘要
通过引入和解决两个相关约束的变分问题以及频谱分析,找到了一种从规定的非线性schrödinger方程中固定孤子频率的方法,并回答了归一化解决方案中的一个开放问题。然后,首次证明了大孤子的存在和轨道稳定性,具体取决于非线性schrödinger方程的频率,这是第一次证明具有竞争力的能力非线性。另外,具有不同速度的方程式的多颜色是由稳定的大孤子构建的。
By introducing and solving two correlative constrained variational problems as well as spectrum analysis, an approach to fix soliton frequency from the prescribed mass for nonlinear Schrödinger equations is found, and an open problem in normalized solutions is answered. Then existence and orbital stability of big solitons depending on frequencies for nonlinear Schrödinger equation with competitive power nonlinearity is proved for the first time. In addition multi-solitons of the equation with different speeds are constructed by stable big solitons.