论文标题

曲折系统和无限面的组件

Components in meandric systems and the infinite noodle

论文作者

Féray, Valentin, Thévenin, Paul

论文摘要

我们在这里研究大型典型曲折系统的渐近行为。更准确地说,我们将$ m_n $ on 2n $上的随机统一系统$ m_n $(如$ n \ rightarrow \ infty $)与Curien,Kozma,Kozma,Sidoravicius和Tournier和Tournier({ 2019)。结果,用$ cc(m_n)$表示$ m_n $的连接组件的数量,我们证明了$ cc(m_n)/n $的概率的融合到某个常数$κ$,回答了一个由Goulden-nica-nica-nica-nica-puder({\ emint。nnic.nest。nest。nnic.not。nest。nest。nes.nest。 Kargin({\ EM统计物理学杂志},181(6):2322---2345,2020)。该结果还提供了有关非交叉分区晶格的Hasse图的渐近几何形状的信息。最后,我们获得了常数$κ$的表达方式,作为蜿蜒的无限总和,这使我们能够计算$κ$的上和下近似值。

We investigate here the asymptotic behaviour of a large typical meandric system. More precisely, we show the quenched local convergence of a random uniform meandric system $M_n$ on $2n$ points, as $n \rightarrow \infty$, towards the infinite noodle introduced by Curien, Kozma, Sidoravicius and Tournier ({\em Ann. Inst. Henri Poincaré D}, {6}(2):221--238, 2019). As a consequence, denoting by $cc( M_n)$ the number of connected components of $ M_n$, we prove the convergence in probability of $cc(M_n)/n$ to some constant $κ$, answering a question raised independently by Goulden--Nica--Puder ({\em Int. Math. Res. Not.}, 2020(4):983--1034, 2020) and Kargin ({\em Journal of Statistical Physics}, 181(6):2322--2345, 2020). This result also provides information on the asymptotic geometry of the Hasse diagram of the lattice of non-crossing partitions. Finally, we obtain expressions of the constant $κ$ as infinite sums over meanders, which allows us to compute upper and lower approximations of $κ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源