论文标题

电晕刚度

Corona Rigidity

论文作者

Farah, Ilijas, Ghasemi, Saeed, Vaccaro, Andrea, Vignati, Alessandro

论文摘要

我们对其他集合理论公理对商结构的影响的研究进行了统一的概述。我们的重点是刚性,以相关商的适当非平凡的自动形态的存在(或不存在)来衡量。该主题研究的教科书示例是布尔代数$ \ mathcal {p}(\ m athbb {n})/\ text {fin} $,其行为是该调查围绕的模板:强迫AxiOMS强迫AxiOMS暗示其所有的自动态在含义上,几乎是$ n of the Mathistions $ n of the the the the the the the the the the the the the Orf floff flofe,几乎可以{连续性假设这种刚性失败,$ \ Mathcal {p}(\ Mathbb {n})/\ Text {fin} $承认许多非平凡的自动形态。我们考虑了这种现象的深远概括,并提出了各种各样的情况,在这些情况下,类似模式持续存在,主要集中在布尔代数,čech-stone剩余的剩余和$ \ mathrm {c}^\ ast $ -Algebras上。我们调查了该领域的艺术状况和未来的前景,讨论了主要的开放问题,并尽可能概述了证明的主要思想。

We give a unified overview of the study of the effects of additional set theoretic axioms on quotient structures. Our focus is on rigidity, measured in terms of existence (or rather non-existence) of suitably non-trivial automorphisms of the quotients in question. A textbook example for the study of this topic is the Boolean algebra $\mathcal{P}(\mathbb{N})/\text{Fin}$, whose behavior is the template around which this survey revolves: Forcing axioms imply that all of its automorphisms are trivial, in the sense that they are induced by almost permutations of $\mathbb{N}$, while under the Continuum Hypothesis this rigidity fails and $\mathcal{P}(\mathbb{N})/\text{Fin}$ admits uncountably many non-trivial automorphisms. We consider far-reaching generalisations of this phenomenon and present a wide variety of situations where analogous patterns persist, focusing mainly (but not exclusively) on the categories of Boolean algebras, Čech-Stone remainders, and $\mathrm{C}^\ast$-algebras. We survey the state of the art and the future prospects of this field, discussing the major open problems and outlining the main ideas of the proofs whenever possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源