论文标题
可变长度的停止反馈代码,具有有限的BI-WAWGN通道的有限最佳解码时间
Variable-Length Stop-Feedback Codes With Finite Optimal Decoding Times for BI-AWGN Channels
论文作者
论文摘要
在本文中,我们对二进制输入添加剂白色高斯噪声通道的可变长度停止反馈(VLSF)代码的性能感兴趣。我们首先在长度的尾巴概率上形成紧密的近似值 - $ n $累积信息密度。在Yavas \ emph {等}的工作的基础上,对于给定的信息密度阈值,我们制定了整数程序,在所有解码时间中,在所有平均误差概率,最小间隙和Integer约束的情况下,在所有解码时间中,平均区块长度最小化上限。最终,在所有阈值上的局部最小上限最小化将产生全球最小的上限,这称为两步最小化。对于整数程序,我们提出了一种贪婪的算法,该算法可能会产生次优整数解码时间。通过允许积极的实价解码时间,我们开发了差距约束的顺序差优化(SDO)程序,该过程依次生成最佳的,实价的解码时间。我们确定了误差制度,在这种误差方面,Polyanskiy在零以零停止方案并不能改善可实现性结合。在此错误制度中,两步最小化使用GAP受限的SDO表明,有限的$ m $足以实现PolyanSkiy的限制,以使用$ M = \ infty $的VLSF代码。
In this paper, we are interested in the performance of a variable-length stop-feedback (VLSF) code with $m$ optimal decoding times for the binary-input additive white Gaussian noise channel. We first develop tight approximations on the tail probability of length-$n$ cumulative information density. Building on the work of Yavas \emph{et al.}, for a given information density threshold, we formulate the integer program of minimizing the upper bound on average blocklength over all decoding times subject to the average error probability, minimum gap and integer constraints. Eventually, minimization of locally minimum upper bounds over all thresholds will yield the globally minimum upper bound and this is called the two-step minimization. For the integer program, we present a greedy algorithm that yields possibly suboptimal integer decoding times. By allowing a positive real-valued decoding time, we develop the gap-constrained sequential differential optimization (SDO) procedure that sequentially produces the optimal, real-valued decoding times. We identify the error regime in which Polyanskiy's scheme of stopping at zero does not improve the achievability bound. In this error regime, the two-step minimization with the gap-constrained SDO shows that a finite $m$ suffices to attain Polyanskiy's bound for VLSF codes with $m = \infty$.