论文标题
持续超级 - 埃德丁顿黑洞增长的简单条件
A Simple Condition for Sustained Super-Eddington Black Hole Growth
论文作者
论文摘要
宇宙学中最紧迫的问题之一是,在大爆炸的十亿年内,黑洞(BHS)如何在高红移中为类星体提供动力。在这里,我们表明,可以使用Eddington分数$ f _ {\ rm EDD} $> 2/$> 2/$ε$来实现持续的超级伊德丁顿积聚,其中$ε$是在积聚过程中产生辐射的效率。在这种状态下,辐射的势头太少,无法停止吸积流,而插入的气体捕获了辐射。然后,BH增长不受阻碍,直到耗尽气体耗尽为止,与以较低的速率积聚相比,这受积聚过程中产生的辐射的限制。大型高红色类星体宿主星系中可用的大型气体供应可以通过这种供应限制的积聚模式容易地积聚到种子BHS上,从而为早期宇宙中如何组装这种超级质量BHS提供了解释。如果大部分BH生长发生在没有相关的辐射逃脱以使播层间培养基电离时,则这种持续的超级 - 埃德丁顿的增长也可以解释针对高红色类星体周围的H II区域的短寿命。此外,这意味着可能难以检测到一群被遮盖的迅速增长的BHS人群,也许可以解释为什么观察到的Eddington分数如此之多的类星体被观察到了。最后,可以轻松地在宇宙学模拟中实现这种持续超级 - 埃德丁顿增长的简单条件,这些条件可用于评估其发生的环境。
One of the most pressing questions in cosmology is how the black holes (BHs) powering quasars at high redshift grow to supermassive scales within a billion years of the Big Bang. Here we show that sustained super-Eddington accretion can be achieved for BHs with Eddington fractions $f_{\rm Edd}$ > 2/$ε$, where $ε$ is the efficiency with which radiation is generated in the accretion process. In this regime, the radiation carries too little momentum to halt the accretion flow and the infalling gas traps the radiation. The BH growth then proceeds unimpeded until the gas supply is exhausted, in contrast to accretion at lower rates which is limited by the radiation generated in the accretion process. The large gas supply available in massive high-redshift quasar host galaxies may be readily accreted onto seed BHs via this supply-limited mode of accretion, providing an explanation for how such supermassive BHs are assembled in the early universe. This sustained super-Eddington growth may also explain the short lifetimes inferred for the H II regions surrounding high-redshift quasars, if the bulk of the BH growth occurs without the associated radiation escaping to ionize the intergalactic medium. It furthermore implies that a population of obscured rapidly growing BHs may be difficult to detect, perhaps explaining why so few quasars with Eddington fractions higher than a few have been observed. Finally, this simple condition for sustained super-Eddington growth can easily be implemented in cosmological simulations which can be used to assess in which environments it occurs.