论文标题
cygnus x-2的反射模型的半径限制与nustar和更好
Radius Constraints from Reflection Modeling of Cygnus X-2 with NuSTAR and NICER
论文作者
论文摘要
我们介绍了nustar的光谱分析和对发光,持续积聚的中子恒星(NS)低质量X射线二元二元cygnus X-2的更好观察结果。将数据分为不同的分支,这些分支在X射线颜色图的Z轨道上轨迹痕迹。即水平分支,正常分支和两者之间的顶点。 X射线连续频谱以两种不同的方式建模,从而产生了可比的质量拟合度。该光谱显示出以扩大的Fe K线形式形式的反射成分的明确证据,以及在1 KEV附近的较低的能量发射特征,可能是由于离子化等离子体远离最内向的积聚磁盘所致。我们用两个独立模型(Relxillns和rdblur*rfxConv)来解释反射谱。推断的倾向与早期的估计值一致,从椭圆形光曲线建模(relxillns:$ i = 67^{\ circ} \ pm4^{\ circ} $,rdblur*rfxconv:$ i = 60^{\ circ} {\ circ} \ pm10^} $)。内部磁盘半径保持靠近NS($ r _ {\ rm in} \ leq1.15 \ r _ {\ Mathrm {isco}} $),无论沿Z-Track沿源位置或1 KeV功能如何建模。给定的ns质量为$ 1.71 \ pm0.21 \ m _ {\ odot} $,这对应于$ r _ {\ rm in} \ leq19.5 $ km的保守上限,$ m = 1.92 \ m = 1.92 \ m _ {\ odot} $ km { $ m = 1.5 \ m _ {\ odot} $。我们将这些半径限制与从NS重力波合并事件获得的半径约束和最近的脉冲光曲线建模测量结果进行了比较。
We present a spectral analysis of NuSTAR and NICER observations of the luminous, persistently accreting neutron star (NS) low-mass X-ray binary Cygnus X-2. The data were divided into different branches that the source traces out on the Z-track of the X-ray color-color diagram; namely the horizontal branch, normal branch, and the vertex between the two. The X-ray continuum spectrum was modeled in two different ways that produced a comparable quality fit. The spectra showed clear evidence of a reflection component in the form of a broadened Fe K line, as well as a lower energy emission feature near 1 keV likely due to an ionized plasma located far from the innermost accretion disk. We account for the reflection spectrum with two independent models (relxillns and rdblur*rfxconv). The inferred inclination is in agreement with earlier estimates from optical observations of ellipsoidal light curve modeling (relxillns: $i=67^{\circ}\pm4^{\circ}$, rdblur*rfxconv: $i=60^{\circ}\pm10^{\circ}$). The inner disk radius remains close to the NS ($R_{\rm in}\leq1.15\ R_{\mathrm{ISCO}}$) regardless of the source position along the Z-track or how the 1 keV feature is modeled. Given the optically determined NS mass of $1.71\pm0.21\ M_{\odot}$, this corresponds to a conservative upper limit of $R_{\rm in}\leq19.5$ km for $M=1.92\ M_{\odot}$ or $R_{\rm in}\leq15.3$ km for $M=1.5\ M_{\odot}$. We compare these radius constraints to those obtained from NS gravitational wave merger events and recent NICER pulsar light curve modeling measurements.