论文标题

三元埃及分数带

Ternary Egyptian fractions with prime denominator

论文作者

Mond, Adva, Portier, Julien

论文摘要

对于Prime数字$ P $,令$ a_3(p)= | \ {m \ in \ mathbb {n}:\存在m_1,m_2,m_3 \ in \ mathbb {n},\ frac {m} {p} = \ frac {1} {1} {m_1} {m_1} {m_1}+\ frac+\ frac {1} {1} {1} {m_2}+frac} | $。在2019年,卢卡(Luca)和帕帕拉迪(Pappalardi)证明了$ x(\ log x)^3 \ ll \ sum_ {p \ le x} a_ {3}(p)\ ll x(\ log x)^5 $。我们改进上限,显示$ \ sum_ {p \ le x} a_ {3}(p)\ ll x(\ log x)^3(\ log \ log \ log x)^2 $。

For a prime number $p$, let $A_3(p)= | \{ m \in \mathbb{N}: \exists m_1,m_2,m_3 \in \mathbb{N}, \frac{m}{p}=\frac{1}{m_1}+\frac{1}{m_2}+\frac{1}{m_3} \} |$. In 2019 Luca and Pappalardi proved that $x (\log x)^3 \ll \sum_{p \le x} A_{3}(p) \ll x (\log x)^5$. We improve the upper bound, showing $\sum_{p \le x} A_{3}(p) \ll x (\log x)^3 (\log \log x)^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源